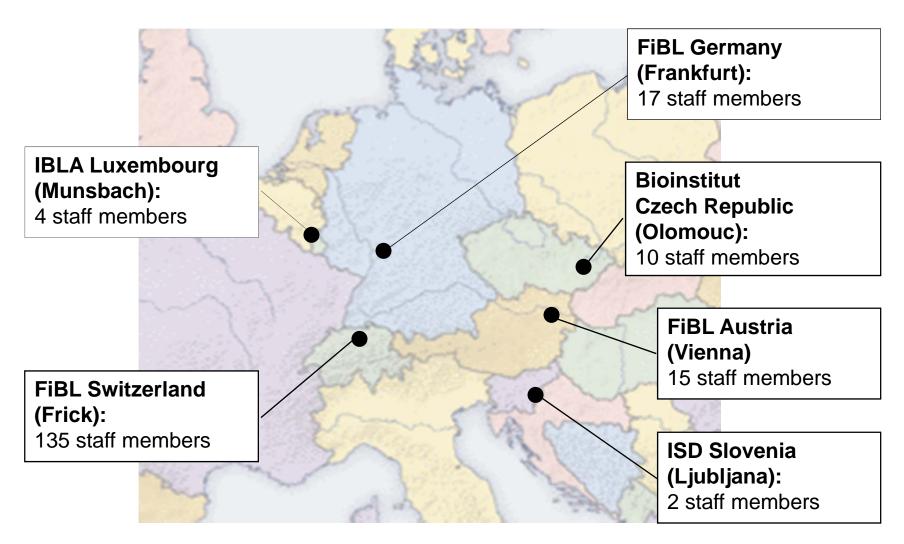


Research Institute of Organic Agriculture Forschungsinstitut für biologischen Landbau Institut de recherche de l'agriculture biologique



Biodiversity impact assessment of Austrian organic and conventional dairy products

Dr. Christian Schader

Dr. Thomas Drapela, Theresia Markut, Stefan Hörtenhuber, Dr. Thomas Lindenthal, Dr. Matthias Meier, Dr. Lukas Pfiffner

FiBL International: A group of six institutes

Context of the project

Austrian organic product line ,Zurück zum Ursprung' (=ZZU) aimed at analysing biodiversity impacts of their products

> ZZU standards:

- > Based on organic standards (EU Council Regulation (EC) No 834/2007)
- > Regional product supply chains
- > Ban of quickly-soluble organic fertilisers
- > Ban of soy bean in feeding rations
- > Less than 0.1% GMO contamination
- > Additional animal welfare standards

Aims of the project

1. Develop a comprehensive biodiversity assessment method suitable for:

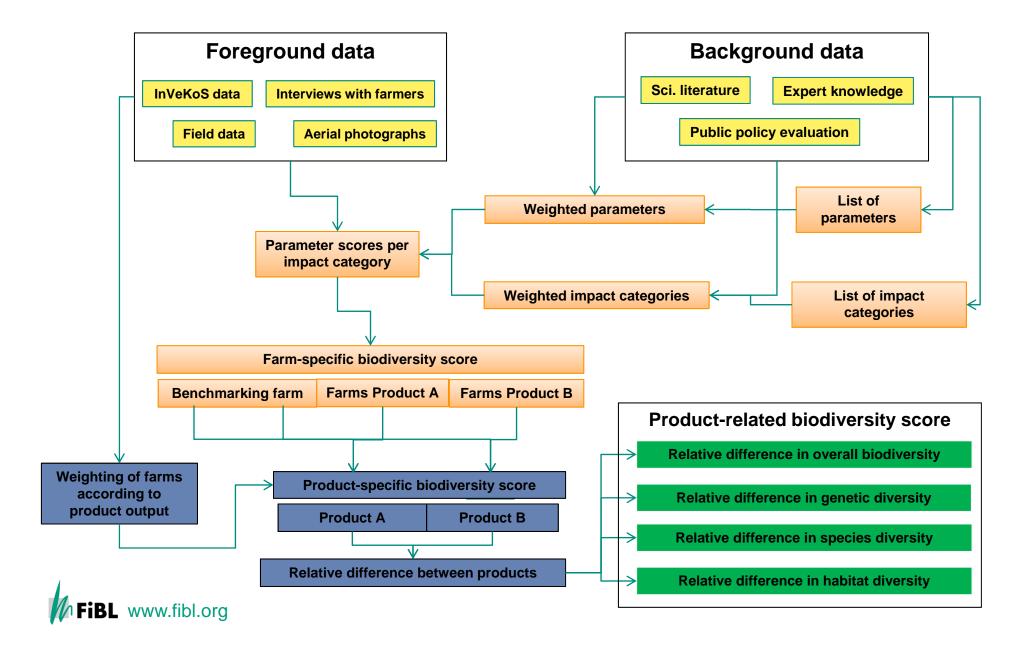
- > Monitoring and evaluation of biodiversity potential at single farm level
- Communicating the biodiversity potential of products to the consumer

2. Apply model for different products:

- > Phase 1: dairy products from 'hay-fed cows' (2010)
- > Phase 2: dairy products from 'silage-fed cows' (2010)
- > Phase 3: bread (2011)
- > Phase 4: vegetables and fruits (2011)

Methodological background

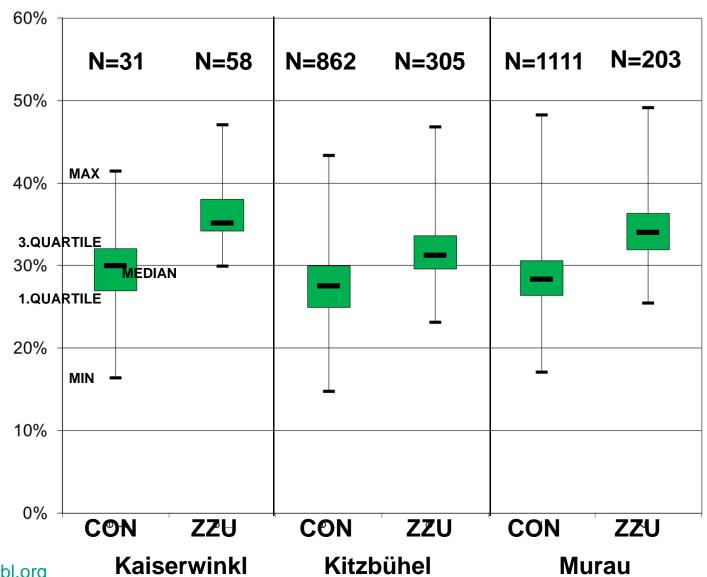
- Method development based on three existing approaches:
 - > Punktesystem Schweiz (Jenny et al. 2008): Farm-level scoring system (Schweizerische Vogelwarte and FiBL)
 - > SALCA-BD (Jeanneret et al. 2008): Farm- and field level biodiversity impact assessment method (ART)
 - CH-FARMIS: Economic model used in a Ph.D. thesis for analysing environmental impacts at agricultural sector level (Schader 2009)



Principles of the biodiversity assessment model

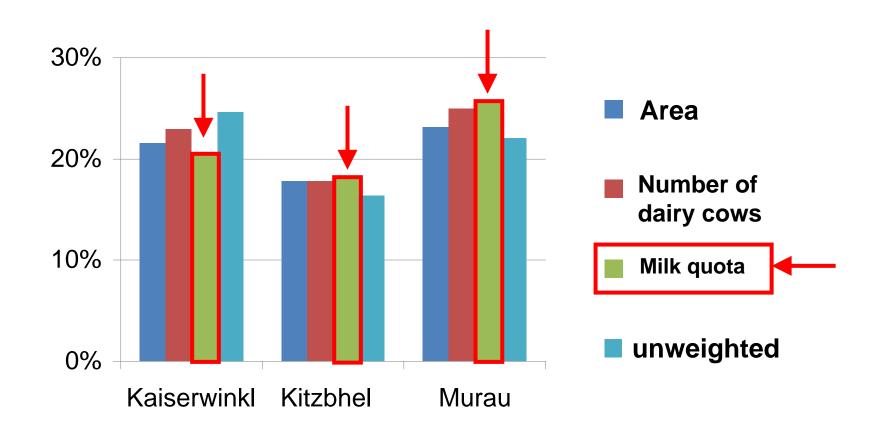
- > Includes genetic, species and habitat diversity
- > Response-based approach (baseline: intensive agriculture, according to minimum environmental standards)
- > System boundaries at farm gate
- > Whole-farm approach, i.e. not only specific crops but the entire farm (including non-crop habitats) is taken into account
- > Product-relation possible via farm-specific outputrelated aggregation factors
- Making use of available statistical datasets as far as possible (official data from ministries)

Overview of the biodiversity assessment model



Parameters

Group of parameters	Parameters (examples)	Relative weight (Hay milk farms)
Entire farm	Nitrogen input, stocking density, etc.	12.3%
Semi natural habitats	Various elements (hedgerows, species-rich meadows and pastures, dry stone walls, ponds, etc.)	57.7%
Arable land and vegetables (crops in rotation)	Reduced tillage, diversified crop rotation, etc.	
Permanent grassland	Wildlife-friendly land use (e.g. use of bar-type mower, cut height) no or reduced use of slurry, etc.	27.3%
Fruits, vine, and other speciality crops	Micro-habitat structures (small elements) (stone heaps, etc.) on the production area, growing resistant varieties, etc.	
Animal husbandry	Rare animal species, own breeding bull, etc.	2.3%
Crop production	Rare plant species, no hybrids, etc.	
Total		100%



Variation in biodiversity scores among farms

Relative differences (of arithmetic means) between ZZU and conventional depending on farm weights

Primary reasons for the differences in biodiversity scores

- 1. Greater share of high-quality nature-protection areas
- 2. Higher share of extensive wetlands
- 3. Lower nitrogen intensity due to lower purchase of concentrates
- 4. Ban of synthetic fertilisers and pesticides
- 5. Feeding of hay instead of silage

Strengths and limitations of the approach

> Strengths

- > Comprehensive model of on-farm biodiversity
- > Identification of farm-specific problems
- > Approach useful for monitoring and optimisation of farms
- > Very good data quality as based on official datasets

> Limitations

- Not fully compatible with LCA standards
- > Data collection and verification very time consuming
- > Result is always a conservative estimate
- On-farm validation of the method has not been done (planned for 2011-2013)

Conclusions

- Method is suitable to produce sound and plausible results on biodiversity at farm and product level (dairy products)
- > ZZU dairy products from hay milk have a better performance (biodiversity potential) regarding the three dimensions of biodiversity than conventional products (18-26%)
- > Performance varies substantially between individual farms => huge optimisation potential

Next steps

- > Calculation of further ZZU supply chains
 - > Products, regions
- Model validation at farm and field level
- > Application of model in other EU countries
- Inclusion of other impact categories in the biodiversity model

